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Clustering dynamics of Lagrangian tracers in free-surface flows
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We study the formation of clusters of passive Lagrangian tracers in a nonsmooth turbulent flow in a flat
free-slip surface as a model for particle dynamics on free surfaces. Single particle and pair dispersion show
different behavior for short and large times: on short times particles cluster exponentially rapidly until patches
of the size of the divergence correlation length are depleted; on larger times the pair dispersion is dominated by
almost ballistic hopping between clusters. We also find that the distribution of particle density is close to
algebraic and can trace this back to the exponential distribution of the divergence field of the surface flow.
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The Lagrangian evolution of passive tracers in turbul
flows has attracted considerable attention recently. Par
tracking techniques have been developed that allow fo
detailed observation of their motion even in high-Reyno
number turbulence@1–3#. The statistics of few particle clus
ters has been used to obtain information on the Lagran
statistics of the flow field@4#. Simplified models of passive
scalars evolution, e.g., the Kraichnan model with its de
correlated random velocity fields, have provided import
insights into the origin of intermittency corrections to scali
laws @5#. The advection of particles that are not neutra
buoyant gives rise to clustering and this process has b
suggested to be essential for the formation of rain@6#. Simi-
lar clustering phenomena should appear for bubbles or i
tial particles in turbulent flows@7#. The problem we conside
here is the advection of Lagrangian particles in a flat f
surface above a turbulent volume flow. Previous approac
to the particle advection in such~compressible! flows include
random maps@8# and Kraichnan models with prescribe
smooth@9# and nonsmooth@10# spatial variations. Realistic
flows have some finite time correlations, but, as we w
demonstrate here, they show further differences: the distr
tion of values for the divergence of the flow field is exp
nential ~and not Gaussian@9#!, the distribution of density is
algebraic~and not lognormal@9#! and the two-particle dis-
persion shows an almost ballistic regime for large sepa
tions. Furthermore, this behavior is outside the range
Kraichnan type models since the ratio between diverge
and velocity gradient fluctuations is such that the surf
flow belongs to a marginal situation where the Kraichn
models predict neither clustering nor exponential separa
of particles@5,11,12#.

The experimental realization, the dynamics and the pr
erties of the flat free surface flows that we consider h
been discussed in detail before@11,12#. What is needed here
is the presence of ar 2/3 scaling in the inertial subrange due
connection to bulk turbulence in the volume below, i.e.
nonsmooth flow with finite time correlations which goes b
yond all previous analytical approaches. On the numer
side we integrate particle trajectories using a bicubic sp
interpolation which was checked by comparison with a
lytical examples@13# and with a direct spectral evaluation o
the velocity between the grid meshs@14#. The pseudospectra
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simulations of the Navier-Stokes flow are based on gr
with 2563256365 nodes, with a forcing that maintains
fixed energy injection ratee @15#. A Taylor-Reynolds number
Rl5ux,rms

2 /@n(]xux) rms#5145 was achieved and the Ko
mogorov lengthh5(n3/e)1/4 is 0.8 grid spacings. The Kol
mogorov time isth5(n/e)1/2.

A typical particle distribution that emerges from a un
form initial distribution is shown in Fig. 1~upper panel!. The
particle dynamics shows two time regimes, a quick clus
ing into elongated structures, followed by a slower exchan
of particles between structures. Superimposed on the par
distribution we show the surface flow that can be conside
as a superposition of an irrotational and a gradient part by
Helmholtz decomposition theorem,

v5vs1vp5“3f~x,y!ez1“c~x,y!, ~1!

with scalar potentialsf(x,y) andc(x,y). It suggests that the
aggregate of particles is dominated by the gradient field, w
the particles clustering in the minima of the potentialc,
similar to compressible Kraichnan flows@5#. When the ve-
locity field is projected onto the solenoidal partvs the par-
ticle distribution remains essentially uniform and there is
clustering~lower panel of Fig. 1!.

The dynamics in this initial period is dominated by th
exponential contraction invp . This follows, e.g., from the
advection-diffusion equation for a smooth densityr with dif-
fusivity D,

] tr52~“•v!r2~v•“ !r1DDr, ~2!

where the divergence patches cause an exponential vari
that typically is faster than the variations of the other ter
@12#. The natural time scalet5^(“•v)2&21/2'3.5th is ap-
proximately the lifetime of a divergence patch which com
out to be about 5th ~half-width at half maximum of the
temporal divergence correlation function!. As expected, the
divergence-free advection contributes little to the clusteri
For the discrete particles we measure the density by co
graining, i.e., dividing the plane into 2563256 grid cells and
count the particles inside the cells. The maximal num
nmax/N with total particle number,N, increases initially ex-
ponentially, as demonstrated in Fig. 2. Fort.t the exponen-
©2002 The American Physical Society03-1
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tially fast formation crosses over to a slower regime. T
accumulation of more particles into larger clusters continu
the inset of Fig. 2 shows the integrated probability to fi
cells with no fewer than N0 particles, s(t,N0)
5Sn5N0

N p(t,n), for different values ofN0 with 1<N0<N.

The probabilities continue to vary even when the maxi
remain essentially constant.

FIG. 1. Distribution of 36000 tracers and the instantaneous
locity field. Upper panel: full flowv. Lower panel: solenoidal flow
vs . The snapshots for both cases were taken att/th521 after the
start. In order to highlight the tracer patterns the underlying fl
fields are shown in one half of the box.

FIG. 2. Maximum particle number per cellnmax/N vs t/t for
particle numbers 36 000, 18 000, 9000, 4500, and 2250~from bot-
tom to top!. Dashed line is forvs and solid lines are forv. The inset
shows the temporal evolution of the integrated probabilitys(t,N0)
with values ofN0 to the right.
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The divergence also determines the particle distribut
p(n), as shown in Fig. 3. In Kraichnan type models th
distribution comes out to be lognormal for smooth flow
@9,5# and delta-like for nonsmooth cases@10#. Although we
were limited to moderate resolutions and particle numbe
our data in Fig. 4 are closer to an algebraic distributi
which is consistent with the exponential distribution of t
divergence~see Fig. 3!. Neglecting the diffusion term in Eq
~2!, the density increases exponentially in the Lagrang
frame,g(t)5r(t)/r(0)5exp„2*0

t (“•v)dt8…. For t<1 we
can simplify the exponent tolt wherel5“•v ~in units of
t21). If we assume that the density variations are faster t
the changes in the velocity field, we have local fluctuatio
in the divergence that give rise to locally varying dens
fluctuations. If P(l) is the probability density function
~PDF! for the divergence, then the PDF forg becomes

P̃~g!5E dld~g2elt!P~l!5
1

gt
P~ ln g/t !. ~3!

Hence, if the divergence fluctuations are Gaussian, as
smooth Kraichnan flows@9#, the PDF of the density fluctua
tions is lognormal. However, in the case of the surface fl
the divergence fluctuations have a filamentary small-sc
structure@12# ~referred to as a shocklet~negative divergence!
in compressible supersonic turbulence@16#!. The small scale
structures appear in the PDF as exponential tails~see Fig. 4!.
If we let P(l)51/(2s)e2ulu/s, wheres'0.95 from Fig. 4,
then

P~g!;ugu2121/(st). ~4!

As shown in the inset of Fig. 3, the slope2a in the tails of
the distribution increases with time, from about23.0 at t
50.5 to22.3 att51, in good agreement with the predictio
from Eq. ~4!. For much longer times the discreteness of t
particles shows up and the distribution ceases to change
t521 we geta51.5.

The change in behavior for times larger than about 3~in
units of the divergence time! is connected with the discret
ness of the particles. The exponential contraction near

-

FIG. 3. Probability densityp(n) for different times during the
cluster evolution. Straight lines indicate fits with an algebraic la
The inset shows the exponentsa of p(n);n2a as a function of
time t/t. The dotted line follows from Eq.~4!.
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minima in the potential leads to a depletion of particles in
neighborhood, so that the density cannot increase furthe
accumulation once all particles that initially were in a regi
with negative divergence are collected in a cell. Estimate
the size of the cells can be based on the spatial correlat
of the divergence field,C(r i)5^“•v(r i01r i)“•v(r i0)&
with r i5x,y. The typical extension of the patches, identifi
from the first zero of the correlations, is about 20h ~inset of
Fig. 4!. Based on this decorrelation lengthl d'20h the typi-
cal maximal number of particles is aboutn/N; l d

2/L2;0.01,
in good agreement with the data in Fig. 2.

As a second set of characteristics we consider the sin
particle dispersion,s(t), and the two-particle pair~or rela-
tive! dispersion,d(t). The first one is defined as the ro
mean square of the absolute particle displacement,s(t)
5^@x(t;x0,0)2x0#2&L

1/2, where^•&L denotes an average ove
the single Lagrangian particles. The second uses the di
enceR12(t)5x1(t;x1,0,0)2x2(t;x2,0,0) between Lagrangian
particle tracks that start atx1,0 andx2,0 and is defined as the
root mean square value for all particles pairs,d(t)
5^@R12(t)2R12(0)#2&L

1/2. In order to fix the dependence o
initial separation we take it to be about 1h, with random
orientation in space. The single-particle dispersion refle
the influence of flow structures at different scales on
particle motion and the relative dispersion can detect
clustering, an interparticle property. In two-dimensional
compressible flows, the limiting cases for both quantities
well known@17#. Both quantities have a ballistic regime,;t,
for short times when particle distances lie within the visco
subrange. For times much larger than the Lagrangian inte
time scale,TL , correlations can be expected to have d
cayed, and the relative or single particle motion becom
statistically independent and both dispersions increase d
sively as in an uncorrelated Brownian motion, i.e.,;t1/2. For
intermediate times, anomalous scaling,;tb with 1/2,b
,1 has been observed. For an inverse Kolmogorov casc
pair dispersion scaling exponents were found to be clos

FIG. 4. PDF of the divergence of the surface flowv. The dotted
line is an exponential fit,p(l)50.68 exp(2ulu/0.95) with l5(“
•v)t. The inset shows the spatial and temporal correlation functi
of the divergence field,C(x) over x/h, C(y) over y/h, andC(t)
over t/th .
01730
e
by

of
ns

e-

r-

ts
e
e

-
e

s
ral
-
s

u-

e,
to

the classical Richardson value of 3/2@18# in numerical simu-
lations @19,20# as well as experiments@21#, but, e.g., sensi-
tive to initial pair separation. In the case of single partic
dispersion transient trapping of tracers in coherent vor
structures@17# affects the value ofb.

Results ons(t) andd(t) for the full surface flow and the
solenoidal part alone are shown in Fig. 5. The integral len
scales areTL /th59.1 for v and slightly shorter,TL /th
57.8, for vs . In all cases we do observe the initial ballist
regime up toTL . The single-particle dispersion crosses ov
to the Brownian regime,s(t);t1/2, for t.TL in both flow
fields as indicated in the upper panel of Fig. 5. We conn
this behavior to the fastly varying divergence patches@12#
that cause a kind of stochastic sweeping of the tracers.

For intermediate times pairs separate superdiffusively
d(t);tb with an exponent of about 1.6, a value that is clo
to the Richardson prediction,dR(t);t3/2. Small differences
may also be attributed to the additional fact that the surf
flow was found to have larger intermittency corrections th
the associated three-dimensional volume turbulence@11#.
Similar scaling behavior is observed for the pair advection
the solenoidal part only~see the lower panel of Fig. 5 fo
both!.

s

FIG. 5. Upper panel: Single-particle dispersion,s(t), as a func-
tion of time. Solid curve is for advection by the full surface flowv,
while the dotted one is for advection by the solenoidal partvs only.
The Lagrangian integral time scales for both fields are indicated
arrows. Lower panel: Two-particle pair dispersion,d(t), as a func-
tion of time. Line styles are as above. The dashed horizontal l
indicate half the box size.
3-3
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While this anomalous scaling continues for advection
vs to even larger times, we find a change of the pair disp
sion to an almost ballistic behavior ofd(t);t0.9 for t
*50th , that does not seem to cross over into a Brown
regime. Microscopically, this means that while one parti
follows its partner within a pair, pair correlations decay mo
slowly andd(t) grows more rapidly than in the Brownia
case. Such almost ballistic scaling was also found for
single-particle dispersion in the strongly compressible o
dimensional Kuramoto-Sivashinsky equation@22#. The dif-
ference to our case might be caused due to the dimensio
ity of the problem and the specific character of our surfa
flow. Superimposed on this process is a chaotic compon
that comes fromvs and causes exponential separation. A
other separation mechanism is a breaking of larger par
clusters due the rapidly emerging flow, i.e., due to the rap
changing divergence patterns. Clustering and separa
were found to be competing processes that cause anom
diffusion on a longer transient phase of the evolution.

The exponential concentration described above has im
cations for the dynamics of~inertial! particles that are no
.
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density matched with the fluid in which they move. The r
lations by Maxey and Riley@23# for their motion implies that
the velocity field of the particles is not divergence free. T
particles will then cluster exponentially, as in Eq.~3!. With a
view towards the formation of rain@6# there is a uniform
condensation of droplets from thermodynamic nucleat
and then an exponential clustering to form larger dro
which then fall to the ground as rain drops. The sizes
clusters thus range from the small scale droplets to the
of rain drops and their size distribution thus reflects the d
tribution of divergence fluctuations by Eq.~3!.
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